CRT Phosphor Video

3:08 pm Uncategorized

Inspired by commenter Katemonster, I’ve put together a short clip with a couple of CRTs from my collection, demonstrating various types of phosphors. There are charts out there that talk about persistence using vague terms like “medium” (compared to what?), so it’s nice to see a real video showing what such a CRT actually looks like.

For the video I’ve used my “orbiter” demo that uses Newton’s law of gravity and Newton’s 2nd law of motion (F=MA) to generate simulated planets that orbit around a sun. It’s a nice way to demonstrate persistence (the way the phosphor fades as the electron beam moves away).

P1 Phosphor
This is the basic green phosphor. At 525nm primary color wavelength, it looks slightly more blue than common super-bright green LEDs. The chart linked above lists the persistence time as 20ms which seems reasonable. The formulation for this phosphor varies between manufacturers so some tubes might be slower than others. It’s very common in early oscilloscopes and oscillographs, and apparently some radar systems as well.

P2 Phosphor
The P2 phosphor color has even more blue in it than the P1–it’s very close to “stoplight green”. The persistence is much longer as you can see in the video (30 seconds or more, depending on the ambient light levels). The charts and reference documents I have list the primary applications as oscillography and radar.

P7 Phosphor
P7 is a very interesting phosphor. It is a cascade phosphor, meaning that it has two layers of material. The electron beam strikes the first (outer) layer which emits a bright blue light with some light near ultraviolet. This high energy light excites the second layer (inner, in contact with the glass) which is a much slower material that emits a yellowish-green light with a very long persistence (around a minute). In the video I move the “orbit” trace off to the side so you can see that original afterimage persists.

It was used mostly for radar and sometimes in oscilloscopes to capture one-time events before storage tubes were invented.

So why use a cascade phosphor? One source states that it was originally designed to be used in intensity-modulated displays (varying brightness levels), but it turns out it also helped prevent radar jamming. Since the jamming signal was not synced to the radar pulses, a long persistence phosphor could average out the jamming signal and allow the operator to see the true signal as viewed on an A-scope (time-based pulse waveform monitor). [Cathode Ray Tube Displays, MIT Radiation Laboratory Series, pg. 626]

P12 Phosphor
This one is my favorite. It’s an orange medium-persistence (a few seconds) phosphor that was apparently used for radar indicators. I don’t know of any that were used in oscilloscopes.

P31 Phosphor
The P31 phosphor was invented as an improved P1 phosphor. It’s much brighter (P1 is 32% as bright) and has short persistence (<1ms). The color has a bit more blue in it–in fact, very close to the P2 phosphor’s color. I would say most analog oscilloscopes from the 70s to today use CRTs with the P31 phosphor.

In many cases these CRTs would be installed behind a colored piece of plastic acting as a color filter. For example, P7 CRTs were often installed with an orange plastic filter in front to make the blue/white phosphor look more similar to the secondary yellow phosphor. P31 CRTs usually have a blue or green plastic filter.

For further reading:

One Response
  1. Katemonster :

    Date: November 4, 2015 @ 8:18 am

    Oh man, this is awesome! This was very helpful, thank you so much!

Leave a Comment

Your comment

You can use these tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Please note: Comment moderation is enabled and may delay your comment. There is no need to resubmit your comment.