Vacuum Tube Op Amp Experiments

Projects 3 Comments

At the electronics flea market I recently found something particularly interesting…

This is a vintage Philbrick K2-W vacuum tube operational amplifier! Turns out they have quite the following. Sadly the original 12AX7 tubes were gone–somewhere, someone probably has rare GAP/R marked tubes in their guitar amplifier. I put in some generic replacements.

I decided to build a little jig to try it out.

This is based on the inverting amplifier schematic given in the K2-W datasheet I linked above. I added a simple linear power supply to generate the +/-300V rails. If you build your own supply, be sure to add bleeder resistors so you don’t get a nasty surprise after you turn it off and try to work on it.

After connecting a 10K series and 100K feedback resistor to the op-amp, I ran a 1KHz 5Vp-p square wave from my function generator into the circuit and saw this:

Neat! The top trace is the input and the bottom trace is the output. The bottom trace has a magnitude of 50Vp-p, as expected.

It’s really interesting to see how the short paragraph of specifications at the bottom of the first page of the K2-W datasheet developed into the formal electrical characteristics tables you can see in more modern op-amp datasheets, like the 741.

Build Guide for Mini Arcade Machines

Projects 19 Comments

Edit: Updated instructions to discuss the game ROM

Have an STM32F407 Discovery board? Have a CRT scope with XY inputs? Try out Asteroids and Battlezone for yourself.

Read the rest…

Battlezone Mini Arcade Source, STM32F407 Discovery Board Sound Mods

Projects 2 Comments

First, the source code for the mini Battlezone arcade machine is now online (GitHub), along with the code for the mini Asteroids arcade.

If you build either of those and try it out on an STM32F407 Discovery board, you will notice that no sound comes out. The reason is that the onboard audio codec has a LRCK line (left/right framing clock for the I2S audio stream) wired up to GPIO PA4, which happens to be one of the DAC outputs that we are using for the vector graphics generation. You’ll need to disconnect LRCK (U7 pin 40) from PA4 and wire it to PA15. I did it by cutting a trace (indicated with a black arrow) on the back of the board to isolate the PA4/LRCK net from the STM32:

And by adding a wire (indicated in red) on the top of the board from R48 to pin 77 (red arrow) of the STM32 (PA15):

Oh, and one more thing. To keep the audio mixer marching along, we had to connect PC6 to PC7. This ties the I2S MCLK to timer 3 channel 1, which triggers a periodic interrupt that mixes new samples into the audio output buffer. The easiest way to do this is to connect a jumper across pins 47 and 48 on the GPIO header P2. They are clearly marked on the board and the pins are right next to each other so this is easy.

Battlezone – Mini Vector Arcade Machines

Projects 18 Comments

If you follow me on Twitter, you’ve probably seen the picture of a CRT deflection yoke undergoing surgery. Well, it’s now installed in a mini Battlezone arcade cabinet that I built for Maker Faire this year.

It uses a 5-inch B&W CRT taken from a broken security camera monitor. I had to rewind the yoke to make the vertical windings fast enough to handle vector graphics. The horizontal windings were already pretty close, but they did need to be rewired to operate in series to reduce the drive current.

The CRT is a bit different than most of the old-style CRTs I work with. For the curious, it uses an EIA E7-91 style base which has an additional grid for acceleration purposes. The lower circuit board in the photo is a potentiometer resistor divider that develops a ~300V bias voltage to drive this additional grid. The upper board is a Cockcroft-Walton multiplier circuit to step up the 1KV power supply voltage to the 4KV necessary for the post-deflection acceleration (PDA) anode. I’m running this CRT a bit under voltage, and it works fine because I’m not trying to fill the whole screen with a solid raster.

The metal enclosure houses the power supplies–it is made out of soft steel with the idea of containing the stray magnetic fields generated by the power supply switching inductors. It works a bit, but I’ve had better luck in the past with mu-metal shields around the CRTs themselves. There are three power supplies: one steps 120V down to +12V, +5V, and -12V. Another steps +12V to +1KV, and the final one steps +12V up to +60V. These last two power supplies are detailed here. They are open-source hardware so you can build your own.

Outside the shield you can see the video amplifier board at the lower left, which is the same circuit used on my electrostatic deflection board but without the deflection amplifiers. At the bottom right is my new magnetic deflection amplifier board which drives the deflection yoke. It is based around an LM4765 audio amplifier IC. I’m not totally happy with the design but eventually I will release the board design. The green board in the upper middle is an STM32F4 Discovery board. The board to the right of it is an audio amplifier that drives the speaker.

The joysticks I machined out of small aluminum blocks. It took some experimenting to figure out how to arrange the springs to get the joystick to return to the center position. The joystick handle on the right is hollow to allow the wires for the fire button to pass through.

I also build a second unit with the same driving circuit but a different CRT–a 5-inch round 5AXP4. This CRT would originally have been used by a TV technician to look for problems with the chassis or the full size picture tube in a customer’s set. The glass is extra thick because the tube was designed to be handled more. This is the same tube that I started experimenting with last year.

Tiny CRTs in Action

Projects No Comments

Richard built up some of my CRT driver boards and put them to use, testing a variety of CRTs with interesting characteristics, such as the rare 1DP11 or the vintage RCA 913.

He’s also got a nice video as well:

If you plan to build up the CRT boards, I highly recommend you visit Richard’s page. He’s drawn up an excellent connection diagram that shows how to interconnect the HV power board, the video power board, and the deflection/video amplifier board.

Deuterium Arc Lamp

Uncategorized No Comments

On Saturday I found a deuterium arc lamp at a local surplus store. It was used, and most likely pulled from an ultraviolet spectroscopy machine. I could not find data on the specific lamp model, but I found a similar lamp. On the chance any of you might know what it is, the lamp is marked

D 805 K

56066349

West Germany

H9

Before running any tests with the lamp, I wiped it down with isopropyl alchohol to remove any fingerprint oils. When heated, they can cause the glass envelope to bubble and even melt, destroying it.

To run this lamp, which is a gas-discharge type, you first have to heat up the cathode. There is a very thick double-spiral tungsten filament inside that uses 2V at 4.5A (or 9 watts!). Once it’s warmed up for a minute or two, you apply the high voltage to the anode. I connected it to a current-limited electrophoresis power supply set to 50mA. The lamp started at 350V and settled to an operating voltage of about 84V. Incidentally, the heat generated by this helps keep the cathode hot, and the filament current can be reduced to improve its lifetime.

Here’s a quick video showing what it looks like.

Deuterium is an isotope of hydrogen: hydrogen has one electron and one proton, and deuterium takes that and adds a neutron. It is not a radioactive isotope, unlike tritium, which has two additional neutrons. According to Wikipedia, Deuterium is used in these lamps because it emits more UV with a wavelength less than 400nm.

If you’ve got one of these lamps and you plan to light it up, you’ll need eye protection. I ran it at a very low beam current (most likely it was designed for 300mA!) and the light was not so intense, but you might want more than just a pair of sunglasses if you’re going to full power…

Miniature Nixie Power Supply – How it Works

Projects No Comments

For more details and the video about the miniature Nixie power supply, see my original post.

First off, this circuit is not a Royer oscillator. As summarized by Jim Williams in his famous app note AN65, Royer developed a power converter using a transformer that saturates every cycle.

A coil saturates when the magnetic field (the B field) has reached the maximum that the magnetic core material can support: if the current (which is what creates the magnetizing H field) increases more, the magnetic field increases very little. The inductance, which is proportional to (B ÷ H), rapidly drops off, causing the current in the coil to increase at a much faster rate. Royer’s design detects this current spike and uses it to switch the transistors (2N74s, in his original paper) into their opposite state.


My circuit is a more common LC resonant converter. There are two transistors, Q1A and Q1B. Resistor R1 provides the bias current for the transistors and gets things started. Current (represented by the large red arrow) flows through the center tap of the coil T1 out to Q1A through its collector. The current in the upper half of coil creates a magnetic field, and the magnetic field induces a voltage in the feedback coil. This voltage reduces the base drive for Q1A and increases the base drive for Q1B (represented by the small blue arrow). When that happens, Q1A shuts off and Q1B turns on. The current in Q1B’s collector (represented by the large blue arrow) creates a magnetic field of the opposite polarity in the coil, and therefore causes the feedback winding voltage to reverse polarity (see the small red arrow), turning off Q1B and turning on Q1A. The cycle repeats as long as there is power.


Above are some approximate waveforms. You can see that the transistors go back and forth, driving the coil first one way and then another. Capacitor C1 and inductor L1 help determine the resonant frequency of the circuit. If you measure the voltage across the entire coil, you’ll see a sine wave.

The output winding of the coil has a lot more turns than the input winding, and it increases the voltage (at the expense of the current) dramatically. This high voltage AC goes through the half wave rectifier formed by D1 and gets filtered to DC by C2. R3 limits the current into the Nixie tube.

You might be wondering why T1 is actually an inductor–an 8.2 millihenry one. It just makes the project easier to build. You only have to wind 12 turns on an off-the-shelf part instead of buying a hard-to-find transformer core and adding all the windings yourself.

If you feel so inclined, try adjusting the component values. Start with C1 and then maybe R1 or even L1. Try changing the number of turns on the coil.

Miniature Coin Cell Nixie Tube Power Supply

Projects 19 Comments

Update 11/3/2014: Fixed the coil connections on the schematic, along with the inductance. Also, check out this post to see how the circuit works.

This project has been a long time in progress. It started years ago at a Maker Faire where I built a Nixie tube pendant powered by a lithium coin cell battery. Since then, I’ve decided to make a PC board and put together some instructions on how to build such a power supply yourself. These little supplies are great for steampunk jewelry or possibly single-digit Nixie tube clocks (they’re not quite strong enough to drive multiple tubes). The battery life should be around 3 hours or so for a CR2032 lithium coin cell.

The schematic is below–click for a larger view. The bill of materials is located here, including Mouser Electronics part numbers. If you decide to order, get at least 5 of each part just in case you lose or burn up some of them.  Note: Mouser seems to be out of stock for the T1 inductor, but Digikey has it here.

Q1 is a single device; it actually contains two transistors which is why it looks like that on the schematic.

To make it easier to build, I’ve put up a convenient OSH Park project page link so you can order boards. When I ordered from them, it cost $2.80 for a set of three boards (with free USPS shipping). Not a bad deal at all!

When you have boards and components, there’s a specific order of assembly that makes things a bit easier. See this YouTube video:

Basically you need to assemble the components in the following order:

  1. Solder C1.
  2. Solder Q1. Be sure you line up the beveled edge with the extra-wide silkscreen. If you put it in backwards the power supply will not work.
  3. Flip the board over.
  4. Solder D1, then R2, and then C2. C2 is 0.01uF, similar to C1, but it has a 250V rating. It is very important not to mix these up.
  5. Solder R1, and then T1 (the big coil, not marked on the silkscreen).
  6. Take a piece of 32 gauge magnet wire that is 13 inches long and tin about 1/8 of an inch at one end. I use a soldering iron to burn off the varnish. Solder it into the upper left through hole that is below the coil.
  7. Wrap 5 turns clockwise around the coil T1. Thread the end of the wire into the middle through hole below the coil.
  8. Turn the wire around and thread it back through the same hole, pulling it tight to form a tiny loop. Solder the loop to the through hole.
  9. Take the wire and wrap another 5 turns clockwise around the coil. Thread the end through the top right through hole below the coil, and solder it in place. Trim off any excess.
  10. Get another piece of 32 gauge magnet wire that is 5 inches long, and tin about 1/8 of an inch at one end. Solder it into the lower left hole that is below the coil.
  11. Wrap 2 turns clockwise around the coil T1. Thread the end of the wire through the lower right through hole that is below the coil. Solder it, and then trim off any excess
  12. Solder the inductor L1. The reason it needs to be soldered last is that it makes it hard to wind wire around the coil T1.
  13. Solder connecting leads to the +, -, and OUT terminals.

To use it, connect a coin cell’s negative terminal to “-,” the coin cell positive to “+,” and “OUT” to the anode of a Nixie tube. The Nixie tube cathode goes to the coin cell negative terminal. Don’t touch the “OUT” terminal–you could get a shock. In fact, if you build the power supply into jewelry or something people will be touching, insulate all the connections.

Have fun!

 

A Miniaturized Discrete MC1466

Cleverness, Projects 11 Comments

Update: the bill of materials is now available. You can order boards from OSH Park using this direct link. Last time I ordered, it cost me a grand total of $3.55 for three boards (free shipping), and it took about two weeks for the boards to arrive.

I screwed up. My bench power supply is a Lambda LPT-7202-FM triple output (0-7V @ 5A, 0-20V @ 1.5A, 0-20V @ 1.5A), and I blew it up by trying to desulfate a lead-acid battery. The idea is to take a dead lead-acid battery and recondition it by charging it with a current-limited 15V source while feeding it high voltage pulses. I had a diode connected in between the battery and the bench supply to protect the power supply from the high voltage pulses. Well, the diode failed. It was a sad day.

Fortunately the service manual for the supply is available online. I traced around the circuit and found that two of the power control chips were fried, but everything else seemed OK–I could move the one remaining functional chip from channel to channel to confirm that. The control chips were marked with the Motorola logo and a Lambda house part number: FBT-031. A forum thread indicated that the part was actually the MC1466. Sadly this chip is long out of production and a bit hard to find, although a popular auction site had several listed from a seller in China (but who knows if the parts were counterfeit or not).

The datasheet has the full schematic including resistor values, but how do I know that it actually matches the chip? Since the IC is packaged in a ceramic DIP, I followed reader Uwe’s suggestion and took a chisel to one of the dead parts.

It worked and nothing was damaged! The die looks like this:

I went over the layout and it matches up with the datasheet schematic. Those funny round elements are actually zener diodes. You can see the long skinny resistors and the lateral PNPs as well as the NPN transistors and diodes. Below is the schematic (click to enlarge):

The IC design is pretty archaic. I’d say it dates to the late 1960s. There are fairly ordinary differential amplifiers, but the current mirrors are really strange, and the voltage reference circuit uses Zener diodes and series-connected diodes instead of a temperature compensated bandgap reference. The two Zener diodes (the only round features on the die) are probably just reverse biased NPN transistors, using the ~7.5V avalanche breakdown of the base-emitter junction. The lateral PNPs have a much higher breakdown voltage so they can’t be used this way.

Here’s a labeled die photo (click for a larger image) so you can see where each of the components are. The component designators match up with my schematic, not the IC datasheet schematic.

The device is simple enough that I decided to build a really small PC board with discrete components. I found that the BC847BVN (NPN/PNP dual transistor), BC847BV (dual NPN), and BAS16VV (triple diode) came in a really tiny SOT-563 package. Believe it or not, this is not the tightest or smallest layout I’ve done. This is a 2-layer board with 6 mil traces and 6 mil spaces.

To give you an idea just how small the SOT-563 is, take a look at the first BC847BVN I soldered:

The part is 1.05mm x 1.05mm! I had to use a very fine soldering iron tip and a microscope. Another trick is to use really thin solder (I used 0.38mm). As you can see, the resulting board is just slightly larger than the original DIP IC:

It really is pin compatible. I plugged two of them into my Lambda supply and now it works perfectly!

Inside a TTL Logic IC

Uncategorized 2 Comments

Since 2014 is generally considered the 50th anniversary of TTL logic, I thought I’d take a TTL logic chip apart and do a little analysis.

So I started with a DM7438N, lot code M:P9006Y. Looking at National Semiconductor’s device marking convention document, I take this to mean that it was manufactured in week 6 of 1990 at a subcontractor’s fab in the United States and assembled in Malaysia.

The 7438 is a quad 2-input NAND buffer with open-collector outputs. That means the die should look symmetrical to a degree.

To take it apart, I used a rotary tool to carve out the encapsulation material on the top and the bottom, and then picked at it with side cutters until the chip fell out. Sadly I cracked off a corner of the die including one bond pad, but it’s still possible to figure out how it works.

What does all this do? See the image below. I’ve cropped all but one gate and highlighted the various semiconducting regions in different colors. I’ve also given designators to all the components.

Red represents the N-type collector epitaxial diffusion. Cyan represents the P-type base diffusion, and purple represents the N+ emitter region.

The schematic looks like this:

That dual-emitter transistor (Q1) sure looks strange!

How does it work? Well, if both A and B inputs are a logic high, then Q1 is off, but some current flows from R1 (4K ohm) through the base collector junction (since it is, after all, a PN junction) and feeds the base of Q2. Q2 turns on, and its emitter current feeds R3 (1K ohm) and Q3. Q3 turns on as well, and the output Y gets driven low. The non-inverted version of the output signal is available at the collector of Q3 (biased through R2, a 1.6K ohm resistor), but this particular chip doesn’t use it.

If either A or B goes low, then Q1 gets turned on. Current flows through the base emitter junction and the base gets pulled to about 0.6V above ground. No current flows through the base of Q2 because the voltage on the collector of Q1 is just too low for any current to flow. Q3 therefore stays off, and the output Y goes high impedance. By the way, this is what open collector means–the collector of the output stage transistor is left “open” with no corresponding transistor above it to pull it high.

Diodes D1 and D2 are just for input protection.

There are a couple of unused components. There is a resistor right below R1, and another resistor below R2. There are two extra transistors with a shared collector to the left of Q3. A different top metal mask could connect these extra components into the circuit and change the function of the device.

Can you think of some other gates that could be built by changing the top metal mask? Remember that there is only one metal layer which limits where you can route the traces.

« Previous Entries Next Entries »